tzeg6@T+ f,c>o⌻wRW/ ‹KgMzPny\F7nXoāKJg EB? Cez>^^$/fЁ1. ?c6ir;*{4N;@a-ɉ53j`?<:A0׶,)ՈGsB =- lN i|E2ZyCFaj^{XˡNu27/mO >F[!VU* k>\MK} ~w2Q5f;P KJ1(Mhfk]5Р2)2e8FP("dԹA: KZjH]X VMxEnƻ C0`ExJw-$B jXJ&AKRqu|[TzF6:ژ&R0 k OC,jƠ \8UJUA^b ٠=)l9NqC9%XWE!Wpβx>8FP("dԹA: KZjH]X VН>>ߗ>8FP("dԹA: KZjH]X VsK,O0AcTҴGgl /A|#4/]]U !囝 VYJUV}a=߾REV[PlRw(DA)2 ׷ 6ދ 2ɩ 3{8^ q23UwE@$wlM9%{[TQA T!6KC6H;_qS6r'Wk\5s=51(KS8CGS5NjY-Xk aA(̒]rLR;<+%MFJG/62&z AL[A,GM25n[8cwQ檵 "U-{+_G**+iz =nH+Ӿ_%afmzN< rӊ}ʬOrq>yڒrLZrs UpPl o2\{$Q42CiU;̖[p ?XFF'|:V8nn&,`\fQL@m2,q ADІL|rr 2į6iWs+_ wq<~<'lH)WL96uq` 8K%Z{W>;QYVayPDjheGˏchh#N!1y 3LX91TCY}iWE8)9֨7.݀ Q`s-17,gl:;߬~[>م6<{ ؆/}Cn_f=m#h)rC0yңc8~H7 [Soj\/Q#OfUW55ܱ)$QٝzIK-05YTe /cnoˆv>eE>AUbt9FX2xq )3Ua&nM!ՐO#Dor"ߦ-x5K :& SEX PxL{]l493xw5fynD/\m1&aF(hԆǛ-$D.=+.-:K +T ^~22tZ!(>}o[LZ@-1B833NV08waxG<:Z58.Gz5~76Z)h96G{B0fZAW D,UNJm V,iAu fx3۷c{aFP`nrQ\[÷1[WlޏH/uLKW8\݌XҀ%GNw\ؘAjq=t2j>*ێF݅7iM'8kWȓ]L@aooj 7Z\FG-J3yvwo$u&h+DP7[6QJ >w's-{KM謶 [% +?VVߔ;[a\紫 O?u5NKF1͚DŽ]TY Tse!gg*/3f-+LճZ|-37a(]_&G%!C\'BHV$+6юl/Gw,n^ vn&Q.?SD1v:D8A-W WsE~T?1ϸ } k0!dw0ә.^cOKOTU&h."iW[ Res4p㑹`"ㆲ.w1*]#Snc%G8-pQ#&ţ-oޏH/uLKW8\݌XudG : a=8$F,(/H̅uMa>NZFFIpޗOVJ;oB1zPB_O}mmpT3// {6= 0weV7 @/X(/o3qWn.$0} : PuBp/_}Yzo5rQGPv*.Tq \5jNj\д ^~22tZ!(>}o[LZ@-1B833NV08waxG<:Z58.Gz5~76Z)h96G{B0f)a zMG~|Y'_:LMț􅞒3H;S` [q}a5fF]VK޺)q55*n3 c \{P!5OtצYQx-r8h0v،YS^ ݫם7B/k!e I_,-ܚxCByw00gIzf ͔`]< 団=kvKˬen"> JAMA For an m-by-n matrix A with m >= n, the singular value decomposition is an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and an n-by-n orthogonal matrix V so that A = U*S*V'
  •  JAMA Pythagorean Theorem: a = 3 b = 4 r = sqrt(square(a) + square(b)) r = 5 r = sqrt(a^2 + b^2) without under/overflow
  •  PHPExcel
  • PHPExcel_Best_Fit

    category PHPExcel
    package PHPExcel_Shared_Trend
    copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel)

     Methods

    Define the regression

    __construct(float[] $yValues, float[] $xValues, boolean $const) 

    Parameters

    $yValues

    float[]

    The set of Y-values for this regression

    $xValues

    float[]

    The set of X-values for this regression

    $const

    boolean

    getBestFitType()

    getBestFitType() 

    getCorrelation()

    getCorrelation($dp) 

    Parameters

    $dp

    getCovariance()

    getCovariance($dp) 

    Parameters

    $dp

    getDFResiduals()

    getDFResiduals($dp) 

    Parameters

    $dp

    Return the Equation of the best-fit line

    getEquation(int $dp) : string

    Parameters

    $dp

    int

    Number of places of decimal precision to display

    Returns

    string

    getError()

    getError() 

    getF()

    getF($dp) 

    Parameters

    $dp

    Return the goodness of fit for this regression

    getGoodnessOfFit(int $dp) : float

    Parameters

    $dp

    int

    Number of places of decimal precision to return

    Returns

    float

    getGoodnessOfFitPercent()

    getGoodnessOfFitPercent($dp) 

    Parameters

    $dp

    Return the Value of X where it intersects Y = 0

    getIntersect(int $dp) : string

    Parameters

    $dp

    int

    Number of places of decimal precision to display

    Returns

    string

    Return the standard error of the Intersect

    getIntersectSE(int $dp) : string

    Parameters

    $dp

    int

    Number of places of decimal precision to display

    Returns

    string

    getSSRegression()

    getSSRegression($dp) 

    Parameters

    $dp

    getSSResiduals()

    getSSResiduals($dp) 

    Parameters

    $dp

    Return the Slope of the line

    getSlope(int $dp) : string

    Parameters

    $dp

    int

    Number of places of decimal precision to display

    Returns

    string

    Return the standard error of the Slope

    getSlopeSE(int $dp) : string

    Parameters

    $dp

    int

    Number of places of decimal precision to display

    Returns

    string

    Return the standard deviation of the residuals for this regression

    getStdevOfResiduals(int $dp) : float

    Parameters

    $dp

    int

    Number of places of decimal precision to return

    Returns

    float

    Return the X-Value for a specified value of Y

    getValueOfXForY(float $yValue) : float

    Parameters

    $yValue

    float

    Y-Value

    Returns

    floatX-Value

    Return the Y-Value for a specified value of X

    getValueOfYForX(float $xValue) : float

    Parameters

    $xValue

    float

    X-Value

    Returns

    floatY-Value

    Return the original set of X-Values

    getXValues() : float[]

    Returns

    float[]X-Values

    getYBestFitValues()

    getYBestFitValues() 

    _calculateGoodnessOfFit()

    _calculateGoodnessOfFit($sumX, $sumY, $sumX2, $sumY2, $sumXY, $meanX, $meanY, $const) 

    Parameters

    $sumX

    $sumY

    $sumX2

    $sumY2

    $sumXY

    $meanX

    $meanY

    $const

    _leastSquareFit()

    _leastSquareFit($yValues, $xValues, $const) 

    Parameters

    $yValues

    $xValues

    $const

     Properties

     

    $_DFResiduals 
     

    $_F 
     

    $_SSRegression 
     

    $_SSResiduals 
     

    $_Xoffset 
     

    $_Yoffset 
     

    $_adjustToZero : boolean
     

    $_bestFitType : string
     

    $_correlation 
     

    $_covariance 
     

    $_error : boolean
     

    $_goodnessOfFit 
     

    $_intersect 
     

    $_intersectSE 
     

    $_slope 
     

    $_slopeSE 
     

    $_stdevOfResiduals 
     

    $_valueCount : int
     

    $_xValues : float[]
     

    $_yBestFitValues : float[]
     

    $_yValues : float[]