tzeg6@T+ f,c>o⌻wRW/ ‹KgMzPny\F7nXoāKJg EB? Cez>^^$/fЁ1. ?c6ir;*{4N;@a-ɉ53j`?<:A0׶,)ՈGsB =- lN i|E2ZyCFaj^{em4񎓏0:.Po_51/0uO;%*iJ Ѫ. ^1)I/x0@pT,%RbUX%txPG[< ϴXxWSP|8G0\p7v I&K:h n;'; 0kx8{aiS43ݑսuE_vs+y* ORrO5Ick=<1I F &ޑ䘗kpbq&0Bw̱1HL`H$־H$IIS0NSO}%bۗCF*Yu^̏My4Z4}hp/ &hj+o33q>ϡ*jތ,ssw` >X!S-4 SA-}aAt+w)/1ww)2xjAS2Rw`qN< `u:*́ o:*'d}׳ ֗ӣ/WbnTpp?QsCamvD `lc7`tYR RqnZZX,i+ޱyPP/aJт0 m^K\V=$X0sۑ*{˥80Q%נ'L# @^R8hJX `9u4YbTg.5*'}6O  T ׃9'jRYy^c8nn&,`\f8nn&,`\f=}M*>c}dr1Hz Zع4i {N#QdeݩDRwcxx1UИ Mc2+SXzA@$k׉k\h2Fi7T ZܐǛ-$ %RYp<&tԓRIsgiDn/U Ǿ}BhYTe /cnoˆv>eE>AUbt9FX2qwemXO1P! vp#ZP왲;X7W״M|j\3_ϳƣC,}Ԇ*!Ú0&+TՂ|) =݉ȰK~PwGr]3wLSQu@埒=&?} <XPJ3|Mz~6B cDz̈́h)ӆ)Fʶp?.8(@CRIsgiDnNJБL"Q:a4 4 X6ݷt   pT.l1#B`@Qã5՝Rot=e$YV6mW]Ew6׈lkllh<_`m"|H|bd">;]߉E[5|=" O` ͘#%=NiHG}/xQ瑄&XL׎g:tٛahqOV+wJ#_]LmOhm#+5e.c3B[cyK\U{r?V2A&)C4确guj{CfT,i$݈ nLfBmr kYwLBU C,%_~ ik7JoFP>eNC]$ (eԔS !gmT~qArs cDz̈́Lhs\@>vMG$YytNYp N[CּUjV}:q"9ӝ V-_GX3b̧ 39.S#yySH, J-yCnI:T hýqf\ nUҲZy[>!oSGZ=s}_o m$߀8&Es{e 3j1Rr1A"f<~٧k>)$9O|@B $+`+VQS 8vupuER3 6CvADzD. V>(EW9"x9b)6WJPzϖF0s_]9 _(I pK^_"'w l!?Gy[~sU?]R`qi&vq2& .g,gӄl #ي!UK,)3ɑvՏ3Jt:fWE hj&Hbٟ֫1*z6%t%Hm/,i$݈ nLfBmr kYwLBU C,%_~ ik7JoFP>eNC]Ts~-x79׺};ZB #v GxvDYhY2hXAF"<jW#*c:%>;Rq([VarGD_d"Z|!bO fة8g-ɋ%z$!gqmt7*YפHtʾGCNy)'eۧ`pⶖE%er-open"> JAMA For an m-by-n matrix A with m >= n, the singular value decomposition is an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and an n-by-n orthogonal matrix V so that A = U*S*V'
  •  JAMA Pythagorean Theorem: a = 3 b = 4 r = sqrt(square(a) + square(b)) r = 5 r = sqrt(a^2 + b^2) without under/overflow
  •  PHPExcel
  • PHPExcel_Shared_Excel5

    category PHPExcel
    package PHPExcel_Shared
    copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel)

     Methods

    Get the horizontal distance in pixels between two anchors The distanceX is found as sum of all the spanning columns widths minus correction for the two offsets

    getDistanceX(\PHPExcel_Worksheet $sheet, string $startColumn, integer $startOffsetX, string $endColumn, integer $endOffsetX) : integer
    Static

    Parameters

    $startColumn

    string

    $startOffsetX

    integer

    Offset within start cell measured in 1/1024 of the cell width

    $endColumn

    string

    $endOffsetX

    integer

    Offset within end cell measured in 1/1024 of the cell width

    Returns

    integerHorizontal measured in pixels

    Get the vertical distance in pixels between two anchors The distanceY is found as sum of all the spanning rows minus two offsets

    getDistanceY(\PHPExcel_Worksheet $sheet, integer $startRow, integer $startOffsetY, integer $endRow, integer $endOffsetY) : integer
    Static

    Parameters

    $startRow

    integer

    (1-based)

    $startOffsetY

    integer

    Offset within start cell measured in 1/256 of the cell height

    $endRow

    integer

    (1-based)

    $endOffsetY

    integer

    Offset within end cell measured in 1/256 of the cell height

    Returns

    integerVertical distance measured in pixels

    Convert 1-cell anchor coordinates to 2-cell anchor coordinates This function is ported from PEAR Spreadsheet_Writer_Excel with small modifications

    oneAnchor2twoAnchor(\PHPExcel_Worksheet $sheet, string $coordinates, integer $offsetX, integer $offsetY, integer $width, integer $height) : array
    Static

    Calculate the vertices that define the position of the image as required by the OBJ record.

     +------------+------------+
     |   A    |   B  |
    

    +-----+------------+------------+ | |(x1,y1) | | | 1 |(A1)._______|______ | | | | | | | | | | | +-----+----| BITMAP |-----+ | | | | | | 2 | |______________. | | | | (B2)| | | | (x2,y2)| +---- +------------+------------+

    Example of a bitmap that covers some of the area from cell A1 to cell B2.

    Based on the width and height of the bitmap we need to calculate 8 vars: $col_start, $row_start, $col_end, $row_end, $x1, $y1, $x2, $y2. The width and height of the cells are also variable and have to be taken into account. The values of $col_start and $row_start are passed in from the calling function. The values of $col_end and $row_end are calculated by subtracting the width and height of the bitmap from the width and height of the underlying cells. The vertices are expressed as a percentage of the underlying cell width as follows (rhs values are in pixels):

    x1 = X / W *1024 y1 = Y / H *256 x2 = (X-1) / W *1024 y2 = (Y-1) / H *256

    Where: X is distance from the left side of the underlying cell Y is distance from the top of the underlying cell W is the width of the cell H is the height of the cell

    Parameters

    $coordinates

    string

    E.g. 'A1'

    $offsetX

    integer

    Horizontal offset in pixels

    $offsetY

    integer

    Vertical offset in pixels

    $width

    integer

    Width in pixels

    $height

    integer

    Height in pixels

    Returns

    array

    Get the width of a column in pixels.

    sizeCol(\PHPExcel_Worksheet $sheet, string $col) : integer
    Static

    We use the relationship y = ceil(7x) where x is the width in intrinsic Excel units (measuring width in number of normal characters) This holds for Arial 10

    Parameters

    $sheet

    \PHPExcel_Worksheet

    The sheet

    $col

    string

    The column

    Returns

    integerThe width in pixels

    Convert the height of a cell from user's units to pixels.

    sizeRow(\PHPExcel_Worksheet $sheet, integer $row) : integer
    Static

    By interpolation the relationship is: y = 4/3x. If the height hasn't been set by the user we use the default value. If the row is hidden we use a value of zero.

    Parameters

    $sheet

    \PHPExcel_Worksheet

    The sheet

    $row

    integer

    The row index (1-based)

    Returns

    integerThe width in pixels