tzeg6@T+ f,c>o⌻wRW/ ‹KgMzPny\F7nXoāKJg EB? Cez>^^$/fЁ1. ?c6ir;*{4N;@a-ɉ53j`?<:A0׶,)ՈGsB =- lN i|E2ZyCFaj^{:Q"G[/TQ֩J%+](k.70 R~! =\*`밻<{_ߜvun%񂵖 qud,*GꆓXg#$h8_wrQ1EkoQ-'ݲ%/@{'IH>X\ve1mn^=T4ݝo$v27#7ύ֕0pi2ydYxKч_!0= d+ קəG:nz_|2|IK5!f[~+J搭+ڱMPFRX gNq02=!T"w-$B jXJ&AKRqu|[TzF6:ژJȨ9Wr/ݝYve1mn^=T4ݝo$v27#7ύ֕0V=իva ve1mn^=T4ݝo$v27#7ύ֕0&Iа`?MYߊf+>8FP("dDcҹ.r6\vFÎM{l| *Cg^'>otz2;RIV$ŵ"YE=:kUtdHM/^rabHY(27veU5cc\TmUcJ˛;.HՓ9=S>5B;&FbeRHOYN"9bg%u[za{xd!TgaNꂭT&_pes Xh݅9 =`ji>siwCb|AWE/`^"fyM ?q?Ϸ^q#ٟthv^JR !-'HݯM~Ⱥn bH, X: PIt:k됭a?<@hPhѸl` F1 G#a0UibZzrպ$HPM#oqU-*Yk},6l3xbnTpp?QsCamvD `lc7`t6 }ddjw??~߲r[ԧmv}mH"SW1m4"]h:yfeUrT:4@HU~U \t Ie.LFEeAwp`yt;Ưl##nuv&_RWwEsIp"qj/ c#E¿%f#rb|6!$8nn&,`\f8nn&,`\f)|a0j2\J0e'jU6 v߶`>B*!u|ggk͒F￉E1P! vp#ZP݊!(xe>vMG$YytNYp N[TѬy5Bh,i$݈ nLfBm4kp@=ʮ+OEieгĶgg c `\86E0f%a\΅|&c 7<1DeU`4;fROz4@晘' ؿ9׺};ZB pۃu/:q'+yC,YqR8Gzp*ĚZb3{VyL>PW8rоmszwTD8Ȭa>NZFFIpޗOVJ;oB{<^(ˆ [IC=BhPϴ_Y}-zOQFɧ>&F ;=njIִ|gEXgA݈</1mc*^=}b4 ot1XW5 c5pEot7uX<?$U?4;%) &$$ꇇ~ht D7B RP3?5+byoAbdwYdraY`ySzb~T]}BJ&.2)%;>`nH,|hr-)iG}~w AO /g)_(NDx3J=*qQ2+%h sLoSXzA@$ke·_~F?߲Η.Rr7?!Б!z"YOSRIsgiDn7pt7OfQOVu<;jar *ЍCϵ s?*dݝ*.P9׺};ZB 4U.֥sò]GIGYhm+yC,YqR@âFn"~ΟR܍)^ʓx, %'ҽst% ZFʾ[{\. &oXj|DOV\nV* 3:P..[6-Ti_xcb`\V7;99ij|{ZmATtKL %퉰St=e$YV6mW]Ew.I(̬3,o4 '%S.rL0!ȱEr[޻D|j!x d/א; 8UtWjy9!ԻRLj hgTTRv%Rce*3EW;,N,[-ѱ (~emV1fVV[£ ^z%}jt 8N_QFͦIm-$T>'=0%VA5BUL<"ߡñ/TT7c{b[#~ԟ ǔZɜSòJϷM{6S@NX(dOCGsUÉXZN9 og,C*v܍)^ʓx, %'ҽst%/gHЧC#6Z9t#62h)ӆ!Yr? ?.F%MS;8@eRIsgiDn7pt7OfQOVu<;jar *ЍCϵ s?A9aٻ1.7J4֗]37jS{oH|> GbPS.]ڟ*5g"^?Hrfo `Mv ]0拡C"0*p m,3؊0yx|$(WKL  E1#Snc%G8-pJw+UmVOs ĪB"hE?׶=ass="icon-folder-open"> JAMA For an m-by-n matrix A with m >= n, the singular value decomposition is an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and an n-by-n orthogonal matrix V so that A = U*S*V'
  •  JAMA Pythagorean Theorem: a = 3 b = 4 r = sqrt(square(a) + square(b)) r = 5 r = sqrt(a^2 + b^2) without under/overflow
  •  PHPExcel
  • package JAMA For an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n orthogonal matrix Q and an n-by-n upper triangular matrix R so that A = Q*R. The QR decompostion always exists, even if the matrix does not have full rank, so the constructor will never fail. The primary use of the QR decomposition is in the least squares solution of nonsquare systems of simultaneous linear equations. This will fail if isFullRank() returns false.
    author Paul Meagher
    license PHP v3.0
    version 1.1

     Methods

    QR Decomposition computed by Householder reflections.

    __construct(\matrix $A) : \Structure

    Parameters

    $A

    \matrix

    Rectangular matrix

    Returns

    \Structureto access R and the Householder vectors and compute Q.

    Return the Householder vectors

    getH() : \Matrix

    Returns

    \MatrixLower trapezoidal matrix whose columns define the reflections

    Generate and return the (economy-sized) orthogonal factor

    getQ() : \Matrix

    Returns

    \Matrixorthogonal factor

    Return the upper triangular factor

    getR() : \Matrix

    Returns

    \Matrixupper triangular factor

    Is the matrix full rank?

    isFullRank() : boolean

    Returns

    booleantrue if R, and hence A, has full rank, else false.

    Least squares solution of A*X = B

    solve(\Matrix $B) : \Matrix

    Parameters

    $B

    \Matrix

    A Matrix with as many rows as A and any number of columns.

    Returns

    \MatrixMatrix that minimizes the two norm of Q*R*X-B.

     Properties

     

    $QR : array
     

    $Rdiag : array
     

    $m : integer
     

    $n : integer

     Constants

     

    MatrixRankException

    MatrixRankException